Anti-Neoplastic Cytotoxicity of Gemcitabine-(C4-amide)-[anti-EGFR] in Dual-combination with Epirubicin-(C3-amide)-[anti-HER2/neu] against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole

نویسندگان

  • CP Coyne
  • Toni Jones
  • Ryan Bear
چکیده

AIMS Delineate the feasibility of simultaneous, dual selective "targeted" chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively "targeted" for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. METHODOLOGY Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it's potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. RESULTS Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced greater levels of anti-neoplastic cytotoxicity than either of the covalent immunochemotherapeutics alone. The benzimidazole microtubule/tubulin inhibitor, mebendazole complemented the anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. CONCLUSIONS The dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced higher levels of selectively "targeted" anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) than either covalent immunochemotherapeutic alone. The benzimidazole tubulin/microtubule inhibitor, mebendazole also possessed anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) and complemented the potency and efficacy of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine

The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes ...

متن کامل

Gemcitabine-(C4-amide)-[anti-HER2/neu] Anti-Neoplastic Cytotoxicity in Dual Combination with Mebendazole against Chemotherapeutic-Resistant Mammary Adenocarcinoma.

INTRODUCTION Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated and competitively inhibits cytidine incorporation into DNA strands. Diphosphorylated gemcitabine irreversibly inhibits ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic, gemcitabine decreases neoplastic cell proliferation and induces apoptos...

متن کامل

Anti-Neoplastic Cytotoxicity of Gemcitabine-(C4-amide)-[anti-HER2/neu] in Combination with Griseofulvin against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3)

INTRODUCTION Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated and in this form it competitively inhibits cytidine incorporation into DNA strands. Diphosphorylated gemcitabine irreversibly inhibits ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic, gemcitabine decreases neoplastic cell proliferation and...

متن کامل

Epirubicin-[Anti-HER2/neu] Synthesized with an Epirubicin-(C13-imino)-EMCS Analog: Anti-Neoplastic Activity against Chemotherapeutic-Resistant SKBr-3 Mammary Carcinoma in Combination with Organic Selenium.

PURPOSE Discover the anti-neoplastic efficacy of epirubicin-(C13-imino)-[anti-HER2/neu] against chemotherapeutic-resistant SKBr-3 mammary carcinoma and delineate the capacity of selenium to enhance it's cytotoxic anti-neoplastic potency. METHODS In molar excess, EMCH was combined with epirubicin to create a covalent epirubicin-(C13-imino)-EMCH-maleimide intermediate with sulfhydryl-reactive p...

متن کامل

Synthesis of Gemcitabine-(C4-amide)-[anti-HER2/neu] Utilizing a UV-Photoactivated Gemcitabine Intermediate: Cytotoxic Anti-Neoplastic Activity against Chemotherapeutic-Resistant Mammary Adenocarcinoma SKBr-3.

Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated intracellularly where it competitively inhibits cytidine incorporation into DNA strands. Another mechanism-of-action of gemcitabine (diphosphorylated form) involves irreversible inhibition of the enzyme ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014